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---------------------------------------------------------------ABSTRACT------------------------------------------------------- 

In this paper we adopted  a new approach for evaluating the size of the BDD and also generated modified binary decision 
diagrams for calculating the reliability of the given directed computer communication network. We have also shown that 
these modified binary decision diagrams are of minimum size. Conclusively, we can say that more than one optimal 
variable ordering may exist for finding the reliability of particular networks.  
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1. Introduction 

Network reliability analysis receives considerable 

attention for the design, validation, and maintenance of 
many real world systems, such as computer, 
communication, or power networks. The components of 
a network are subject to random failures, as more and 
more enterprises become dependent upon CCN or 
networked computing applications.  Failure of a single 
component may directly affect the functioning of a 
network. So the probability of each component of a CCN 
is a crucial consideration while considering the 
reliability of a network. Hence the reliability 
consideration is an important factor in CCN. The IEEE 
90 standard defines the reliability as “the ability of a 
system or component to perform its required 
functions under stated conditions for a specified 
period of time.” There are so many exact methods for 
computation of network reliability. The network model 
is a directed stochastic graph G = (V, E), where V is the 
vertex set, and E is the set of directed edges. An 
incidence relation which associates with each edge of G 
a pair of nodes of G, called its end vertices. The edges 
represent components that can fail with known 
probability. In real problems, these probabilities are 
usually computed from statistical data. 

  The  problem related with connection function is NP-
hard [13]. The same thing is observed for planar 
graphs[12]. In the exact method there are two classes for 
the computation of the network reliability. The first class 
deals with the enumeration of all the minimum paths or 
cuts. A path is a subset of components (edges and/or 
vertices), that guarantees the source and the sink to be 
connected if all the components of this subset are 
functioning. A path is a minimal if a subset of elements 
in the path does not exist that is also a path. A cut  is a 
subset of components (edges and/or vertices), whose 
failure disconnect the source and sink. A cut is a 
minimal if the subset of elements in the cut does not 
exist that is also a cut. The probabilistic evaluation uses 
the inclusion-exclusion, or sum of disjoint products 
methods because this enumeration provides non-disjoint 
events. Numerous works about this kind of methods 
have been presented in literature [14, 21, 22]. 

In the second class, the algorithms are based on graph 
topology. In the first process we reduce the size of the 
graph by removing some structures. These structures as 
polygon-t o-chain [15] and delta-to-star reductions [11]. 
By this we will be able to compute the reliability in 
linear time and the reduction will result in a single edge. 
The idea is to decompose the problem in to one failed 
and another functioning. The same was confirmed by 
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Theologou & Carlier [18] for dense networks. 
Satyanarayana & Chang [4] and Wood [20] have shown 
that the factoring algorithms with reductions are more 
efficient at solving this problem than the classical path or 
cut enumeration methods.  

2.  BINARY DECISION DIAGRAM 

Akers [5] first introduced BDD to represent Boolean 
functions i.e. a BDD is a data structure  used to represent 
a Boolean Function. Bryant [19] popularized the use of 
BDD by introducing a set of algorithms for efficient 
construction and manipulation of BDD structure. The 
BDD structure provides compact representations of 
Boo lean expressions. A BDD is a directed acyclic graph 
(DAG) based on the Shannon decomposition .The 
Shannon decomposition for a Boolean function is 
defined as follows:  

f = x. f x = 1 + x. fx = 0 

where x is one of the decision variables, and f is the 
Boolean function evaluated at x = i. By using Shannon’s 
decomposition, any Boolean expression can be 
transformed in to binary tree. BDD are used to work out 
the terminal reliability of the links. Madre and coudert 
[17]   found BDD usefulness in reliability analysis which 
was further extended by Rauzy [2, 3]. They are specially 
used to assess fault trees in system analysis. In the 
network reliability framework, Sekine & Imai [9], and 
Trivedi [26] have shown how to functionally construct 
the corresponding BDD.  

Figu re 1  shows the truth table of a Boolean function f 
and its corresponding Shannon tree.  

 

Sink nodes are labelled either with 0, or with 1, 
representing the two corresponding constant expressions. 
Each internal node u is labelled with a Boolean variable 
var(u), and has two out-edges called 0-edge, and 1-edge. 
The node linked by the 1-edge represents the Boolean 
expression when xi = 1 , i.e. fxi = 1; while the node linked 
by the 0-edge represents the Boolean expression when xi 

= 0, i.e. fxi=0. The two outgoing edges are given by two 
functions low(u) and high(u). 

Indeed, such representation is space consuming. It is 
possible to shrink by using following three postulates. 

 
Remove Duplicate Terminals : Delete all but 
one terminal vertex with a given label, and 
redirect all arcs into the deleted vertices to the 
remaining one. 
 
Delete Redundant Non Terminals : If non 
terminal vertices u, and v have var(u) = var(v), 
low(u) = low(v), and high(u) = high(v), then 
delete one of the two vertices, and redirect all 
incoming arcs to the other vertex.  
 
Delete Duplicate tests : If non terminal vertex 
v has low(v) = high(v), then  delete v, and 
redirect all incoming arcs to low(v). 
 

If we apply all these three rules then the above decision 
tree can be reduced in to the diagrams given below in 
figure 2.  

 

3. Network Reliability  

The reliability of a network G is the probability that G 
supports a given operation. We distinguish three kinds of 
operation and hence three kind of reliability [1, 10].  

Two Terminal Reliability : It is the probability that two 
given vertices, called the source and the sink, can 
communicate. It is also called the terminal-pair 
reliability [25]. 

K Terminal reliability : When the operation requires 
only a few vertices, a subset k of N(G), to communicate 
each other, this is K terminal reliability [7]. 

All Terminal Reliability : When the operation requires 
that each pair of vertices is able to communicate via at 
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least one operational path, this is all terminal reliability. 
We can see that 2-terminal terminal reliability and all 
terminal reliability are the particular case of K-terminal 
reliability [8].  

Effects of Variable Ordering: A particular sequence of 
variables is known as a variable ordering. It has been 
observed that the size of the BDD strongly depends on 
the ordering of variables. The size of BDD means the 
total number of non-terminal nodes in the BDD and 
number of nodes in a particular level.  An ordering is 
said to be optimal if it generates the minimum size BDD 
[23,  24]. Let us consider a Boolean function f given 
below depends on six different variables.  

f = a1.b1 + a2.b2 + a3.b3      ------------------ (1) 

Where ‘.’ and ‘+’ denotes the AND & OR operation 
respectively. If the variables are ordered by “a1 < b1 < a2 
< b2 < a3 < b3” and “a1 < a2 < a3 < b1 < b2 < b3” the BDD 
are shown below: 

 

The researchers [ ]said that the ordering “a1 < b 1 < a2 < 
b2 <  a3 <  b3” is good ordering, because it contains 
minimum number of non-terminal vertices. Since the 
function f is depend on six different variables so its BDD 
must have minimum six non -terminal vertices. So in our 
opinion the  good ordering is the optimal ordering. The 
minimum number of non-terminal vertices of the BDD is 
2n[ ]. Where n is the number of terms in the function. 
Here n = 3 , so for optimal ordering the minimum 
number of non-terminal vertices is 6 for the Boolean 
function f expressed in equation (1). We can generalize 
this function f as shown below:                        

         f = a1.b1 + a2.b2 + a3.b3 + .........+ an.bn ----------  (2) 

The BDD of this function f expressed in equation (2) has 
2n non-terminal vertices one for each variable. The work 
carried out by [] has shown that there are 2n non-
terminal vertices for the general function f represented in 
equation (2), but this will probably not work  if the 
Boolean function f is different. Now let us consider a 
Boolean function f given below: 

f = a1.b1.c1 + a2.b2.c2 + a3.b3  --------------- (3) 

According to the researchers,   there are only three terms, 
so the minimum number of non-terminal vertices of the 
BDD of the Boolean function f expressed in equation (3) 
is 2 * 3 = 6. But this Boolean function  f has eight 
different variables, so it’s BDD must contains minimum 
8 non-terminal vertices. 

Therefore the statement regarding 2n non-terminal 
vertices can be interpreted in a more general way by 
using the total number of different variables. We can say 
that the minimum number of non -terminal vertices of a 
Boolean function f is equal to the number of number of 
different variables used in the function. The researchers 
also said that the ordering “a1 < a2 < a3 < b1 < b2 < b3” is 
bad ordering.  

Now let us try to find out another variable ordering for 
which the size of the BDD is also minimum. For this, we 
consider the function f represented in equation (1). If we 
take the ordering “b1 < a1 < b2 < a2 < b3 < a3”, the BDD 
is shown below: 

 

From the above BDD, we find that there are 6 non-
terminal vertices. Therefore the size of the BDD is also 
minimum for  “b1 < a1 < b2 < a2 < b3 < a3” ordering. We 
can also generate minimum size BDD for the generalize 
function expressed in equation (2) by taking the ordering 
“b1 < a1 < b2 < a2 < b3 < a3 < ........< bn < an”. Thus we 
can say that more than one optimal ordering may exist 
for generating the BDD of the Boolean function f. This 
may be possible only when the  Boolean function f has 
different variables. These minimum size BDD is known 
as Modified Binary Decision Diagrams (MBDD). 

Use of MBDD in Reliability Evaluation of a Directed 
CCN 

Let us consider an example of a directed CCN given 
below in the form of a graph. 
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The network consists of two min-paths from source to 

sink. These min-paths are H1 = {e1, e2}  and  H 2 = {e3, 

e4}. 

Let H1, H2,-----Hn be the n min-paths then the network 

connectivity C can be represented as a logical OR of its 

min-paths.  

                C =  H 1UH2U-------Hn 

So the point to point reliability is :  

       Rs = Pr{C} = Pr { H1UH2U-------Hn }    -------- (4)  

So the network connectivity of the given network can be 
expressed as  

        C1-4 = e1e2Ue3e4                      ----------------------------------------- (5)  

The probability of the union of non-disjoint events, as in 

Formula (4), can be computed by several techniques: 

Here we use the inclusion-exclusion principle.  

Inclusion-exclusion Formula : One method of 

transforming a Boolean expression Φ (G) into a 

probability expression is to use Poincare’s theorem, also 

called inclusion-exclusion method[7]. Let us consider an 

example with two minimal paths H1 and H2 and the 

Boolean expression  Φ (G) = H1 +  H2 , then the 

probability expression E(Φ (G)) can be expressed as 

follows: 

E(H1 +  H2) =  E(H1) + E(H2) – E(H 1.H2) 

 Poincare’s formula for m min-paths :  

 

Let Pi denote the probability of edge ei of being working, 

by applying the Classical inclusion-exclusion formula 

for calculating the probability of given network (figure 

5), we get  

R1-4 = Pr{C 1-4} = p1p2 + p 3p4 – p1p2p3p4    ---------(6)  

There are only two possible existing variable orderings 
to generate modified BDD of the given network (Figure 

5) and we will show that the network reliability, which is 
obtained by Poincare theorem is equal to the network 
reliability, which is obtained recursively by modified 
BDD (all existing variable orderings) of the same 
network (Figure 5). 

We apply the Shannon’s decomposition to the Boolean 
connectivity function of the directed network expressed 
as the union of the min-paths in Formula (5). 
The computation of the probability of the BDD of figure 
5 can be calculated recursively by resorting to the 
Shannon decomposition.  

Pr{F}= p1Pr{Fx1 =1}+(1 - p1)Pr{Fx1 =0}= Pr{Fx1 =0}+ 

p1(Pr{Fx1 =1}-Pr{Fx1 =0}) ---(7)  

where  p1 is the probability of the Boolean variable x1to 
be true and (1-  p 1) is the probability of the Boolean 
variable x1 to be false. 
 

The computation of the probability from the BDD of the 
given network is shown in figure 6 and in figure 7 for 
two possible ordering by applying Shannon’s 
decomposition.  

 

 

From figure 6 and figure 7, we found that more than one 
optimal variable ordering exists for finding the reliability 
of a particular directed CCN. The meaning of particular 
directed CCN is a network that has all its min-paths 
disjoint.  If we consider the network given below  
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The authors[16] already shown that more than one 
optimal ordering exist for findi ng the reliability of the 
above CCN shown in figure 8.  

4. Experimental Results 

Our program is written in the C language and 
computations are done by using a Pentium 4 processor 
with 512 MB of RAM. The computation speed heavily 
depends on the variables ordering because the size of the 
BDD heavily depends on the variable ordering. The size 
of BDD means the total number of nodes in the BDD 
and number of nodes in a particular level. There are only 
two variable orderings  are possible for constructing the 
modified BDD of the given CCN. We have constructed 
these two modified BDD of the given CCN and compute 
the reliability of the given CCN by using these modified  
BDD. We found that the reliability obtained in each case 
by using BDD is same as the reliability obtained by 
inclusion-exclusion formula. We also found that the size 
of the BDD is minimum only in all the cases.  

5. Conclusion 

We found that more than one optimal ordering may 
possible for finding the reliability of the directed CCN. 
The generated BDD are called the Modified BDD. Our 
future work will focus on computing other kinds of 
reliability and reusing the BDD structure in order to 
optimize design of network topology.  
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